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Linear One-Step Processes with Artificial Boundaries
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An artificial absorbing boundary is introduced in a linear birth and death stochastic
process in order to understand the long time behavior of an ecological community. The
solution is obtained by means of a spectral resolution of the probability distribution. A
more general linear process with a coefficient of arbitrary strength near the boundary
both with absorbing and with reflecting boundary conditions is also studied.
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1. INTRODUCTION

Birth and death stochastic processes have been studied in depth and applied to
a wide variety of physical, chemical and biological systems (see Refs. 1 and 2).
When the master equation governing these processes involves a boundary, one
can solve it with artificial or natural boundary conditions, namely with or without
altering the behavior of the birth and death coefficients near the edge (see Ref. 1).
In other words, a master equation has an artificial boundary when there exists at
least one site that is described by a special equation, which does not include the
analytical expression of bn (birth rate) or dn (death rate) that governs the other
sites.

For example, a quantized harmonic oscillator interacting with a radiation
field can be described by a one-step master equation with bn = b(n + 1) and
dn = dn, which drives the probability per unit time for a jump from n to n + 1
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and from n to n − 1, respectively. Without changing the value of the coefficients
at the boundary n = 0, it is possible to reach the well-known reflecting stationary
solution Pn ∝ (b/d)n . In contrast, other phenomena described by bn = bn and
dn = dn are naturally absorbing at n = 0 and the trivial steady-state solution is
Pn = δn,0 (see Refs. 1 and 2).

Bounded random walks with reflecting and absorbing boundary conditions
have been analyzed with coefficients of arbitrary strength at n = 0 by involving
some suitable equations at the boundary. One-step processes with these artifi-
cial boundaries have been extensively used in the study of many physical effects
like evaporation of a gas through a surface, ionic currents through cell mem-
branes, defect diffusion in crystals, chemical reactions and queuing problems (see
Refs. 3–5).

Linear birth and death processes (bn = bn + b̃, dn = dn + d̃) have been
studied by Karlin and McGregor Ref. 6 by using the left eigenvectors of the
infinitesimal matrix generating the process. Their approach relies decisively on
the knowledge of the elaborate structure of general birth and death processes as
developed in Refs. 7 and 8. They demonstrated that a birth and death process is
intimately linked to a Stieltjes moment problem. This connection enabled them to
achieve the conditions for the existence and uniqueness of the spectral resolution
of the probability distribution (see Ref. 9 for further developments along these
lines).

In this paper we present a more straightforward and self-contained analysis of
both the discrete spectrum and the (left and right) eigenvectors for linear one-step
processes with artificial boundaries. Our approach relies only on some properties
of the solution of the Laplace transformed equation of the process. Furthermore
the spectral resolution of a more general problem (which includes both absorbing
and reflecting boundaries) can also be obtained within our method.

In the last few years linear stochastic processes with artificial boundaries
have been applied to the time evolution of ecosystems, mostly within the neu-
tral theory of biodiversity (see Refs. 10–12). This theory provides a framework
which accounts for the distribution of the relative species abundance both for the
metacommunity and the local community (see Refs. 11 and 13).

The neutrality hypothesis is a symmetry assumption at the individual level. It
postulates that all species obey the same interaction rules on a per capita basis (see
Ref. 10). This oversimplified hypothesis, that resembles the ideal gas assumption
in statistical physics, is equivalent to the assumption that the dynamics of the
species is due to the similarity rather than differences between the species.

A slightly modified theory (see Ref. 12), which incorporates density depen-
dence, assumes a rare species advantage by introducing a birth rate bn = bn + b̃
and a death rate dn = dn + d̃ for an arbitrary species with n individuals. Since a
species disappears when its last individual dies, one should solve the master equa-
tion, which drives the population dynamics, with an artificial absorbing boundary
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at n = 0. We wish to stress that, even though in this case the stationary solution
is trivial, owing to Frobenius’ theorem (see Ref. 14), the first eigenfunction of the
spectral resolution of pn(t) can be interpreted as the population distribution of a
given species on time scales µ−1

1 , where µ1 is the first eigenvalue. The continuum
formulation with a Fokker–Planck equation for a less general diffusion problem
was pointed out by Feller many years ago (see Ref. 15 he stressed the importance
of such singular diffusion equations for the theory of stochastic processes and the
theory of semigroups as well.

The structure of the paper is as follows: In Sec. 2 we will derive a solution
for the generating function for the master equation with absorbing boundary
conditions; In Sec. 3 we will find eigenvalues and eigenfunctions for the probability
distribution function; and in Sec. 4 we will consider a solution for the generalized
case of the boundary conditions.

2. ABSORBING CASE

In this section we present the calculations for the absorbing case. When
dealing with absorbing boundaries, one should be aware of the existence and
uniqueness of the solutions of the birth-death master equation. In fact, the non
conservation of the total probability may cause a dependence on initial conditions
of the stationary distribution. Yet if the process is linear, it is possible to prove
both the existence and the uniqueness of the solution (see Ref. 16).

The linearity of the process also ensures that the spectrum is discrete with
non negative eigenvalues (see below) when b �= d, instead it is continuous and
unbounded when b = d. If the process is a left-bounded random walk (symmetric
or asymmetric), then the spectrum is continuous and bounded (see Refs. 1, 4 and
16).

Let us suppose that the time evolution of a population of a given species
is governed by the following birth-death master equation (n = 0, 1, 2, . . .) with
absorbing boundary conditions (abc) at n = 0

∂pn(t)

∂t
= bn−1 pn−1(t) + dn+1 pn+1(t) − (bn + dn)pn(t) (1)

where the birth and death rates are given by

b0 = 0 and bn = bn + b̃ for n > 0
d0 = 0 and dn = dn + d̃ for n > 0.

(2)

To avoid ambiguities, during the calculations we shall suppose that b, d > 0 and
b �= d, but b̃ and d̃ could possibly take negative real values. Notice that if we know
p1(t) then we also know p0(t), because ṗ0(t) = d1 p1(t) (we set b−1 ≡ 0).

We now seek an expansion in (right) eigenvectors of the solution of Eq. (1)
in the abc case (2) with a specified initial condition pn(0). For our purposes, we
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define the following generating function

F(z, t) = zε

∞∑

n=1

pn(t)zn (3)

for 0 < z < 1 and 0 < t < ∞, where the real parameter ε will be defined later.
Using this definition we can transform the previous problem into an inho-

mogeneous first order p.d.e. for F(z, t) with suitable initial conditions and choose
the parameter ε to obtain a bounded solution. The p.d.e. is of the first order due to
the linearity of the birth and death coefficients and it is inhomogeneous because
of the barrier at n = 0. Carrying out the calculations, we get

∂ F(z, t)

∂t
= A(z)

∂ F(z, t)

∂z
+ Ã(z)F(z, t) + f (z, t) (4)

where

A(z) = (1 − z)(d − bz)

Ã(z) = (1 − z)
bd̃ − db̃

d
(5)

f (z, t) = −d1z
d̃
d p1(t)

and p1(t) is the unknown probability of having just one individual at time t . Since
n is not allowed to take negative values, we have fixed ε = d̃/d to remove the
singularity at z = 0. The initial condition for F(z, t) is

F(z, 0) = g(z) (6)

where g(z) is a sufficiently smooth function with g(1) = 1. This kind of inhomo-
geneous p.d.e. may be readily solved with the aid of the Duhamel’s principle (see
Refs. 17–19).

In fact, let F0(z, t) be the solution of the homogeneous p.d.e.
⎧
⎪⎪⎨

⎪⎪⎩

∂ F0(z, t)

∂t
= A(z)

∂ F0(z, t)

∂z
+ Ã(z)F0(z, t)

F0(z, 0) = g(z)

(7)

Moreover, let F1(z, t, τ ) be the solution of the following homogeneous p.d.e.
⎧
⎪⎪⎨

⎪⎪⎩

∂ F1(z, t, τ )

∂t
= A(z)

∂ F1(z, t, τ )

∂z
+ Ã(z)F1(z, t, τ )

F1(z, t, t) = f (z, t) for τ = t

(8)
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where τ is a fixed parameter that simply labels the solution and A(z), Ã(z), f (z, t)
and g(z) are defined as in (5) and (6). Thus if we know the solutions of the initial
value problems (7) and (8) then we also know the solution of the inhomogeneous
p.d.e. (4) with the correct initial values (6), i.e.

F(z, t) = F0(z, t) +
∫ t

0
F1(z, t, τ ) dτ (9)

For the total probability W (t) = ∑∞
n=1 pn(t) we have

∂W

∂t
= −(d + d̃)p1(t) = ∂ F(1, t)

∂t
(10)

and hence there is a reflecting boundary at n = 1 when d̃/d = −1 and an ab-
sorbing one at n = 0 when d̃/d > −1 (the case d̃/d < −1 describes a neg-
ative effective death rate which we are not interested in.) For the probability
p0(t) = 1 − ∑∞

n=1 pn(t) of the population becoming extinct at time t one gets

ṗ0(t) = − f (1, t) = (d + d̃)p1(t) (11)

therefore the inhomogeneous term of (4) takes into account the flux towards n = 0.
The initial value problems (7) and (8) are readily solved by means of the

familiar method of characteristics. After lengthy but standard calculations, one
finally achieves the explicit form of the solution (9)

F(z, t) =
(

d − bz − b(1 − z)e(b−d)t

d − b

) d̃
d − b̃

b

g

(
d − bz − d(1 − z)e(b−d)t

d − bz − b(1 − z)e(b−d)t

)

− d + d̃

(d − b)
d̃
d − b̃

b

∫ t

0

[
d − bz − d(1 − z)e(b−d)(t−τ )

] d̃
d

[
d − bz − b(1 − z)e(b−d)(t−τ )

] b̃
b

p1(τ )d τ (12)

Notice that the integrand in (12) converges uniformly with respect to τ and one
can take a derivative with respect to z directly.

Note moreover that the solution naturally splits into two parts: the first one
is important only at short times and close to the initial condition g(z), the second
one dominates at long time scales and close to the left boundary at n = 0 if b < d
or close to both boundaries (zero and infinity) if b > d. Obviously this is not at all
a complete solution to our problem, because we do not know p1(t) yet. Anyway
we can readily obtain an equation for p1(t) by requiring that it is constructed so
as to satisfy the condition

lim
z→0+

F(z, t) = 0 (13)

that is always true in the absorbing case (i.e. d̃/d > −1 and x ≡ b/d, 0 < x < 1
from now on, for avoiding the possibility of demographic explosion). Notice that
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limz→1− F(z, t) = 1 − p0(t) only yields the identity p0(t) = (d + d̃)
∫ t

0 p1(τ )dτ .
Conversely the limit (13) immediately gives the following integral equation for
p1(t)

d1

∫ t

0

[
1 − e(b−d)(t−τ )

] d̃
d

[
1 − xe(b−d)(t−τ )

] b̃
b

p1(τ ) dτ =
[
1 − e(b−d)t

] d̃
d +N

[
1 − xe(b−d)t

] b̃
b +N

(14)

where we have chosen the initial condition pn(0) = δn,N , which implies g(z) =
z

d̃
d +N due to the definition of the generating function in (3) and (6). The Eq. in

(14) is a Volterra equation (see Ref. 20) whose kernel, having no singularities for
0 < x < 1, is analytic and only depends on t − τ . Therefore the unique solution
is analytic and may be found by means of the familiar Laplace transform.

Thus by taking the Laplace transform of the integral Eq. (14) and using the
convolution theorem (see Ref. 18), one achieves for s > 0

L{p1(t)} ≡
∫ ∞

0
p1(t)e−st dt ≡ p̃1(s) = 1

d1

L{χ (t)}
L{κ(t)} (15)

where

κ(t) ≡
[
1 − e(b−d)t

] d̃
d

[
1 − xe(b−d)t

] b̃
b

, χ (t) ≡
[
1 − e(b−d)t

] d̃
d +N

[
1 − xe(b−d)t

] b̃
b +N

(16)

Now with the change of variable

e(b−d)t = 1 − z

1 − xz
(17)

the Laplace transform κ̃(s) of the kernel κ(t) may be written as

κ̃(s) = K
∫ 1

0
z

d̃
d (1 − z)

s
d−b −1(1 − xz)

b̃
b − d̃

d − s
d−b −1dz (18)

where K = (1−x)
d̃
d − b̃

b

d . As s > 0 and x < 1 we can use the integral representation of
the standard hypergeometric function (see Refs. 21 and 22), then we may rewrite
the previous equation as

κ̃(s) = K�(β) �(γs − β)

�(γs)
F(αs, β, γs ; x) (19)
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with the following definitions
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αs ≡ s

d − b
+ 1 + d̃

d
− b̃

b

β ≡ 1 + d̃

d

γs ≡ s

d − b
+ 1 + d̃

d

(20)

where �(z) and F(α, β, γ ; x) are the gamma function and the standard hyper-
geometric function respectively (see Refs. 21 and 22). Note that, as x is a fixed
parameter smaller than one, in Eq. (19) the condition s > 0 can be dropped,
because in the hypergeometric function the variable s appears only inside its co-
efficients. Therefore Eq. (19) may be regarded as the analytic continuation of the
Laplace transform κ̃(s) inside the complex plane and then s may assume negative
values as well. Furthermore the function (19) is an entire function of s by virtue
of the denominator �(γs), that removes the simple poles of F(α, β, γ ; x). In fact,
there are also the simple poles sn = −n(d − b), owing to the gamma function, but
these will be dropped later.

The preceding integral representation of the hypergeometric function enable
us to carry out the analytic continuation of L{χ (t)} as well, removing the restric-
tions on the variable s. Finally, one gets for L{χ (t)} the following expression

K�(β + N ) �(γs − β)

�(γs + N )
F(αs, β + N , γs + N ; x) (21)

The Eqs. (19) and (21) lead to

p̃1(s) = �(β + N )

d1�(β)

�(γs)

�(γs + N )

F(αs, β + N , γs + N ; x)

F(αs, β, γs ; x)
(22)

and is the solution in (15). It is worth noting that the integral equations of the form
(14), i.e.

∫ t

0
N (t − τ )p1(τ ) dτ = I(t) (23)

with I(0) = 0 can be solved with the aid of the residue theorem. In fact, by means
of the convolution theorem, we find

p̃1(s) = Ĩ(s)

Ñ (s)
(24)

where Ĩ(s) and Ñ (s) are the Laplace transforms of I(t) and N (t) respectively.
If Ñ (s) and Ĩ(s) are analytic functions such that Ñ (s) has simple, isolated zeros
at s = −µ� but ∂sÑ (−µ�) �= 0 and Ĩ(−µ�) �= 0 for any � (see below for the
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meaning of µ�), then the solution can be written down as

p1(t) =
∑

�

Ĩ(−µ�)

∂sÑ (−µ�)
e−µ�t (25)

Therefore by means of (22) and if one knows the µ�’s, this produces a complete
solution to the problem of finding the generating function in (12).

3. EIGENFUNCTIONS AND EIGENVALUES

IN THE ABSORBING CASE

3.1. Eigenfunctions

When b �= d one can prove that linear one-step processes have a discrete
spectrum with only real non-negative eigenvalues (see Ref. 16). We now seek the
probability distribution in an eigenfunction expansion of the form

pn(t) = P stat
n +

∞∑

�=1

c�φ
�
ne−µ�t for n = 0, 1, 2, . . . (26)

The (right) eigenfunctions are φ�
n (with φ0

n = P stat
n , c0 = 1) and the eigenvalues

are such that

µ0 = 0 < µ1 < µ2 < . . . < µ� < . . . for � ∈ N (27)

In this form the eigenvalues µ� are always non-negative and they are the same
both for right and left eigenfunctions. General orthogonality and completeness
properties of birth and death eigenfunctions have been firstly studied by Ledermann
and Reuter Ref. 16 and secondly by Karlin and McGregor Ref. 7 and 8. When the
spectrum is discrete, it is known that in the linear case the right eigenvectors are the
Meixner or the associated Meixner polynomials (see Ref. 9). These polynomials
are orthogonal with respect to a discrete measure (see Appendix B, Refs. 23 and
24). Now we obtain these polynomials in a more direct way.

The previous definitions, the following relations hold in the abc case

F(z, t) = zε

∞∑

n=1

pn(t)zn =
∞∑

�=1

c�φ
�(z)e−µ�t

φ�(z) ≡ zε

∞∑

n=1

φ�
nzn for � = 1, 2, . . . (28)

If we carry out the Laplace transform of pn(t) and F(z, t), we get (n > 0)

p̃n(s) =
∞∑

�=1

c�φ
�
n

s + µ�
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F̃(z, s) =
∞∑

�=1

c�φ
�(z)

s + µ�

(29)

It should be noted that F̃(z, s) is well defined with respect to the variable s in
the whole complex plane, and thus this equation may be defined as the analytic
continuation of the Laplace transform (15) as carried out for Eq. (19).

Moreover, for our purposes it is important to stress that the (simple) poles of
F̃(z, s) (or p̃1(s) as well) are the eigenvalues of the expansion (26) and the �-th
residue of F̃(z, s) is proportional to the generating function for the �-th eigen-
function. Indeed if Cµ�

is a closed simple path that encircles only the singularity
s = −µ� then, by means of the residue theorem, it turns out

∮

Cµ�

F̃(z, s) ds = 2π i c�φ
�(z). (30)

One finds that

φ�(z) ∝ lim
s→−µ�

(s + µ�)F̃(z, s). (31)

Owing to the equation p0(t) = d1
∫ t

0 p1(τ )dτ and to the expression in (26)
for n = 1, one readily gets

p0(t) = 1 − d1

∞∑

�=1

c�

µ�

φ�
1e−µ�t (32)

because limt→∞ p0(t) = 0, whereas p0(t) = 1 + ∑∞
�=1 c�φ

�
0e−µ�t by definition in

(26). Hence one obtains

φ0
0 = 1 and φ�

0 = − d1

µ�

φ�
1 for � = 1, 2, . . . (33)

In order to achieve a general expression for φ�
n , we shall exploit the relation (31).

When carrying out the Laplace transform it is possible to follow two different
routes. Either one finds the solution of the Laplace transformed Eq. (4) or one
carries out directly the Laplace transform of the solution (12). If the integral∫ ∞

0 F(z, t)e−st dt converges uniformly with regard to z and s in their respective
domains, then the two ways would be equivalent. But this is not the case. In fact,
it is possible to see that in general ∂zL{F(z, t)} �= L{∂z F(z, t)}, which breaks the
uniform convergence of the previous integral (see Ref. 25).

Laplace transforming the Eq. (4), one can see that the solution F̃(z, s) has
the form

F̃(z, s) = C(z, s) + D(z, s) p̃1(s) (34)
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where

C(z, s) = − 1

d
zβ+N (1 − z)β−γs (1 − xz)αs−1

×
∫ 1

0
dt tβ−1+N (1 − zt)γs−β−1(1 − xzt)−αs

D(z, s) = βzβ(1 − z)β−γs (1 − xz)αs−1

×
∫ 1

0
dt tβ−1(1 − zt)γs−β−1(1 − xzt)−αs (35)

But the Laplace transform of the solution (12) has the form

F̃(z, s) = C(z, s) + D(z, s) p̃1(s) (36)

where

C(z, s) = C(z, s) + 1

d
(1 − z)β−γs (1 − xz)αs−1

× �(β + N ) �(γs − β)

�(γs + N )
F(αs, β + N , γs + N ; x)

D(z, s) = D(z, s) − β(1 − z)β−γs (1 − xz)αs−1

× �(β) �(γs − β)

�(γs)
F(αs, β, γs ; x) . (37)

It is worth noting that when F(αs, β, γs ; x) = 0 (as a function of s), one obtains
in general D(z,−µ�) = D(z,−µ�) but C(z,−µ�) �= C(z,−µ�), regardless of z.
As it will be pointed out below, this ensures us that if s = −µ�, the failure of the
uniform convergence affects only the part of (12) involving the initial conditions.
Therefore the two preceding routes are equivalent in order to obtain eigenvalues
and eigenvectors, even though the correct generating function of the process to be
used is (12).

The functions C(z, s) and D(z, s) do not have any poles (see Appendix A)
for s = −µ� (note that if C(z, s) had any poles for s = −µ� then the eigenvalues
would depend on the initial conditions). Thus we find the generating function of
the right eigenfunctions, which is that of the associated Meixner polynomials (as
in Ref. 9)

φ�(z) ∝ D(z,−µ�) (38)

Now one may succeed in drawing out the eigenfunctions φ�
n by expanding

D(z,−µ�) in powers of z. Such an expansion is readily accomplished by mak-
ing use of a formula which is proven in Appendix B. The calculations (made
in Appendix A) lead to the eigenfunctions φ�

n (for n, � = 1, 2, . . .), which are
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proportional to

n−1∑

k=0

1

k + β
P (� , σ�−1−k)

k (2x − 1)P (−� , n−1−k−σ�)
n−1−k (2x − 1) (39)

where P (α,β)
n (z) are the Jacobi’s polynomials (see Refs. 9, 21 and 26) and

� = 1 + d̃

d
− b̃

b

σ� = −µ�

d − b
(40)

Thus, if we are given the eigenvalues µ� then we have solved the problem of
finding the time dependent solution in (26) for the abc case.

The previous considerations can be put forward again for the left eigenvectors.
After setting ε = b̃/b − 1 > −1, it is possible to see that the solution of the Laplace
transformed equation (using now left eigenvectors) has a form similar to (34), that
is

G̃(z, s) = C̄(z, s) + D̄(z, s)q̃1(s) (41)

but in this case we have

D̄(z, s) = β̄zβ̄(1 − z)β̄−γ̄s

(
1 − z

x

)ᾱs−1

×
∫ 1

0
d t t β̄−1(1 − zt)γ̄s−β̄−1

(
1 − z

x
t
)−ᾱs

(42)

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ᾱs ≡ − s

d − b
− d̃

d
+ b̃

b

β̄ ≡ b̃

b

γ̄s ≡ − s

d − b
+ 1 + b̃

b

(43)

Thus the generating function of the left eigenfunctions is φ̄�(z) ∝ D̄(z,−µ�) and
one may succeed in drawing out the left eigenfunctions φ̄�

n by expanding D̄(z,−µ�)
in powers of z as just seen. The relations between right and left coefficients are

⎧
⎨

⎩

ᾱs = 1 − αs

β̄ = γs − αs

γ̄s = 1 − αs + β

(44)
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Fig. 1. The upper figure shows the first two roots of F(αs , β, γs ; x) as a function of s when b = 1, d =
2, b̃ = 4, d̃ = 3. For the same parameters the lower figure shows the first five roots.

3.2. Eigenvalues

When b̃ �= 0 it is easy to show that the only poles of p̃1(s) are the solutions
of the equation

F(αs, β, γs ; x) = 0 (45)

as a function of s. Otherwise, if b̃ = 0, the only poles of p̃1(s) are those of �(γs).
In fact, when b̃ �= 0 the function F(αs, β, γs ; x) does depend on s and the

product

1

�(γ )
F(α, β, γ ; x) (46)

is an entire function of α, β and γ , for fixed x (see Ref. 22). Furthermore,
when N > 0 there are no zeros of F(αs, β + N , γs + N ; x) that overlap those
of F(αs, β, γs ; x), otherwise the eigenvalues would depend on the initial condi-
tions. On the contrary, if b̃ = 0 then F(αs, β, γs ; x) does not depend on s and we
have only the poles of �(γs).

It is not possible to give an analytical expression for the eigenvalues in full
generality (Fig. 1 shows the plot of F(αs, β, γs ; x) as a function of s for arbitrary
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values of b, d, b̃, d̃). Yet when x → 1, it is possible to get a simpler expression
for µ1. If the parameters of the standard hypergeometric function F(a, b, c; z) are
such that �(c − a − b) > 0, then it is possible to calculate the value F(a, b, c; 1)
(see Ref. 22):

lim
z→1−

F(a, b, c; z) = �(c)�(c − a − b)

�(c − a)�(c − b)
(47)

where �(z) is the gamma function. If the first eigenvalue is much less than 1 in
units of d − b, then |s/(d − b)| 	 1 and we can write

µ1 = 2(d − b)

∣∣∣∣∣
∂ς=0 F(αs, β, γs ; 1)

∂2
ς=0 F(αs, β, γs ; 1)

∣∣∣∣∣ (48)

where ς = s/(d − b). Thus, when b̃ > βb it is possible to write down at the
leading order

µ1 = (d − b)
1

|�(β) + γ̄ | (49)

where �(z) is the logarithmic derivative of the gamma function (see Ref. 22) and
γ̄ = 0.577 . . . is the Euler’s constant. In order to get µ1 	 1, one also needs that
1 	 β < b̃/b.

When the parameter b̃ is zero, the function F(αs, β, γs ; x) does not depend
on s because αs = γs ; in this case F(αs, β, αs ; x) = (1 − x)−β . As the poles of
�(z) are in z = −n (n = 0, 1, 2 . . .), we immediately deduce the eigenvalues to be

µ� = (d − b)(� + d̃

d
) for � = 1, 2, . . . (50)

4. A MORE GENERAL CASE

It is possible to generalize the preceding birth-death master Eq. (1) with the
following one:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂pn(t)

∂t
= bn−1 pn−1(t) + dn+1 pn+1(t) − (bn + dn)pn(t)

∂p1(t)

∂t
= d2 p2(t) − (b1 + d1η)p1(t)

(51)

in which the first equation holds for n = 2, 3, . . ., here ṗ0(t) = d1ηp1(t) and the
other birth and death rates are defined as before (b1 = b + b̃ > 0, d1 = d + d̃ >

0). Even in this case our master equation involves artificial boundaries, but now the
pure real parameter η (≥ 0) will enable us to provide a solution which embodies at
the same time the absorbing (abc) and reflecting (rbc) boundary conditions with
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a slight additional effort with respect to the previous sections. In fact, by using the
total probability W (t) = ∑∞

n=1 pn(t), we have

∂W

∂t
= −(d + d̃)ηp1(t) (52)

hence there is a reflecting boundary at n = 1 when η = 0 and an absorbing one at
n = 0 when η �= 0. If η = 1, we recover the regular absorbing boundary studied
yet. When η �= 0, it is clear that the stationary solution is always Pstat

n = δn,0,
whereas if η = 0 we have a non trivial stationary solution which is

Pn = N xn

n + δ

(β)n

(δ)n
n = 1, 2, . . . (53)

where x = b/d, 0 < x < 1 and N is a constant; (·)n is the Pochhammer symbol,
i.e. (a)0 = 1, (a)n = a(a + 1)(a + 2) . . . (a + n − 1) for n = 1, 2, . . . (see Ref. 26
for further properties); eventually β = b̃/b > 0, δ = d̃/d > 0.

Now by making similar calculations and suitable adjustments with respect
to the previous two sections, it is possible to find a solution to our problem. The
generating function F(z, t) = zε

∑∞
n=1 pn(t)zn , in which ε = d̃/d, now leads to a

first order p.d.e. for F(z, t) as in (4) but with a slightly different inhomogeneous

term f (z, t) = −d1z
d̃
d [1 + (η − 1)z]p1(t). The condition (13) produces a more

general integral equation for p1(t) than (14). By taking the Laplace transform
of this integral equation and using the same notation as in (20), one attains the
generalization of (22), namely

p̃1(s) = 1

d + d̃

�(β + N )

� (γs + N )
F(αs, β + N , γs + N ; x)

�(β)

� (γs)
F(αs, β, γs ; x) + (η − 1)

�(β + 1)

� (γs + 1)
F(αs, β + 1, γs + 1; x)

(54)
Now one may succeed in deducing the eigenvalues by making use of the recursion
relations for the standard hypergeometric functions (see Ref. 26). The eigenvalues
are the solutions of the equation

(β − γs)F(αs, β, γs + 1; x) = ηβF(αs, β + 1, γs + 1; x) (55)

as a function of s for fixed η and other parameters. In the rbc case we find

(β − γs)F(αs, β, γs + 1; x) = 0 (56)

where the first factor simply tells us that the rbc case has the solution s = 0,
namely the eigenvalue which corresponds to the non trivial steady-state solution.
The other factor provides us nonvanishing solutions unless b1 = 0 (Fig. 2).

Even in this case, when x → 1 it is possible to get a simpler expression for
µ1. If the first non trivial eigenvalue is much less than 1 in units of d − b, then
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|s/(d − b)| 	 1 and now we can write

µ1 = (d − b)

∣∣∣∣
F(α0, β, γ0 + 1; 1)

∂ς=0 F(αs, β, γs + 1; 1)

∣∣∣∣ (57)

where ς = s/(d − b). As before we can exploit the value of F(a, b, c; 1) to obtain
at leading order

µ1 = (d − b)
1

|�(β + 1) + γ̄ | (58)

where �(z) is the logarithmic derivative of the gamma function (see Ref. 22) and
γ̄ = 0.577 . . . is the Euler’s constant. As µ1 	 1 one also needs that 1 	 β < b̃/b.

When the time is about µ−1
1 , the solution in (26) is dominated by the first

eigenfunction. In general this latter is different in the reflecting and absorbing
boundaries and the eigenvalues are distinct as well. Anyway, if µ

(ref)
1 (µ(abs)

1 ) is
the first eigenvalue for the reflecting (absorbing) case, it is possible to see that
µ

(ref)
1 < µ

(abs)
1 for β � 1 (by using the Eqs. (49) and (58)). Therefore within

this regime, the absorbing stationary solution is reached more rapidly than the
reflecting one.

In order to derive the eigenfunctions φ�
n , we can proceed as above. Even in

this case the previous remarks about the uniform convergence of
∫ ∞

0 F(z, t)e−st d t
hold. The solution of the Laplace transformed equation now has the form

F̃(z, s) = C(z, s) + [D(z, s) + (η − 1)E(z, s)] p̃1(s) (59)

where C(z, s) and D(z, s) are as above and

E(z, s) = βzβ+1(1 − z)β−γs (1 − xz)αs−1

×
∫ 1

0
dt tβ(1 − zt)γs−β−1(1 − xzt)−αs (60)

Now we may obtain the eigenfunctions by expanding D(z, s) + (η − 1)E(z, s) in
powers of z. Such an expansion produces for n, � = 1, 2, . . .

φ�
n = N

n−1∑

k=0

[
1

k + β
+ (η − 1)

1 − δn,1

k + β + 1

]

×P (� , σ�−1−k)
k (2x − 1)P (−� , n−1−k−σ�)

n−1−k (2x − 1) (61)

where N is a constant and the other quantities are defined as in (39).
If we use left eigenvectors, then we gain for the solution of the Laplace

transformed equation

G̃(z, s) = C̄(z, s) + [D̄(z, s) + (η − 1)Ē(z, s)]q̃1(s) (62)
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where the new function is

Ē(z, s) = d + d̃

b
zβ̄+1(1 − z)β̄−γ̄s (1 − z

x
)ᾱs−1

×
∫ 1

0
d t t β̄(1 − zt)γ̄s−β̄−1(1 − z

x
t)−ᾱs (63)

and the coefficients are defined as in (43).

5. CONCLUSIONS

In this paper we have obtained a spectral resolution of a linear birth-death
process by exploiting the properties of the solution of the Laplace transformed
equation of the process. Our self-contained approach allowed us to obtain the
eigenvectors and the relative eigenvalues of a more general problem (which in-
cludes both absorbing and reflecting boundaries).

One of the main applications of this spectral resolution concerns population
dynamics. When studying ecosystems, it is possible to take into account an asym-
metry between rare and common species by introducing linear birth and death
rates, i.e. bn = bn + b̃ and dn = dn + d̃ respectively (for an arbitrary species
with n individuals). If there is no immigration or speciation, one should solve the
master equation with an artificial absorbing boundary at n = 0. It is important to
stress that, even though the stationary solution is trivial, the first eigenfunction
of pn(t) can still be interpreted as the population distribution of a given species
on time scales µ−1

1 , where µ1 is the first eigenvalue. Two major simplifications
of our analysis are the non-interacting ideal gas like assumption and ignoring the
effects of the spatial distribution. It would be interesting to probe what qualitative
changes arise on going beyond the mean field-like theory presented here.

APPENDIX A: EIGENFUNCTIONS

In this Appendix we wish to expand the function D(z, s) defined in (35) to
obtain the eigenfunctions of pn(t). By using the identity obtained in (B2), we may
at once write the integral inside D(z, s) (because of the uniform convergence of
the series) in the following form

∫ 1

0
d t tβ−1(1 − zt)αs−σ (1 − xzt)−αs

=
∞∑

i=0

(σ )i

i!
F(−i, αs, σ ; 1 − x)zi

∫ 1

0
t i+β−1dt

=
∞∑

i=0

(σ )i

i + β
F(−i, αs, σ ; 1 − x)

zi

i!
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Fig. 2. The upper figure shows the first two nontrivial roots of F(αs , β, γs + 1; x) as a function of s
when b = 1, d = 2, b̃ = 4, d̃ = 3 in the rbc case. For the same parameters the lower figure shows the
first five nontrivial roots.

where we have defined σ ≡ 2 + d̃/d − b̃/b; β > 0, αs as in (20). The other prod-
uct is

(1 − z)β−γs (1 − xz)αs−1

=
∞∑

m=0

(τ )m

m!
F(−m, 1 − αs, τ ; 1 − x)zm

with τ ≡ b̃/b − d̃/d. As φ�(z) ∝ D(z,−µ�), then φ�(z) is proportional to

zd̃/d
∞∑

n=1

zn
∞∑

m,i=0

(τ )m

m!

(σ )i

i!(i + β)
F(−i, α�, σ ; 1 − x)

×F(−m, 1 − α�, τ ; 1 − x)δm+i+1,n

= zd̃/d
∞∑

n=1

zn
n−1∑

i=0

(σ )i

i!(i + β)
F(−i, α�, σ ; 1 − x)
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× (τ )n−1−i

(n − 1 − i)!
F(i + 1 − n, 1 − α�, τ ; 1 − x)

where α� is αs in which we have set s = −µ�. Thus, owing to the definitions in
(28) the following relation holds when n, � = 1, 2, . . .

φ�
n ∝

n−1∑

i=0

(σ )i

i!(i + β)
F(−i, α�, σ ; 1 − x)

× (τ )n−1−i

(n − 1 − i)!
F(i + 1 − n, 1 − α�, τ ; 1 − x)

(A1)

Now we may simplify this formula by making use of the definition of the Jacobi’s
polynomials in (B3) of the Appendix B. Finally one achieves

φ�
n ∝

n−1∑

i=0

1

i + β
P (1−τ , α�−i+τ−2)

i (2x − 1)

× P (τ−1 , n−i−τ−α�)
n−1−i (2x − 1)

which is our desired result.

APPENDIX B: GENERATING FUNCTION

OF THE HYPERGEOMETRIC POLYNOMIALS

It is well-known that one can achieve an integral representation (see Ref. 22)
of the hypergeometric series that is defined not only for |z| < 1, but is analytic in
the whole complex plane excluding the z-plane cut along the real segment [1,∞].
It can be written as

F(α, β, γ ; z) = �(γ )

�(β)�(γ − β)

×
∫ 1

0
tβ−1(1 − t)γ−β−1(1 − zt)−αd t (B1)

if we assume that �(γ ) > �(β) > 0 and |arg(1 − z)| < π . If either α or β is zero
or a negative integer, the hypergeometric series is a polynomial in z and then the
representation (B1) is no longer a multivalued function. When α = −n or β = −n
the series is a polynomial of degree n: these are the hypergeometric polynomials.
In this case, if we multiply such a polynomial by (γ )n

n! yn and sum over n, we get

∞∑

n=0

(γ )n

n!
F(−n, β, γ ; z)yn = �(γ )

�(β)�(γ − β)
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×
∞∑

n=0

(γ )n

n!

∫ 1

0
tβ−1(1 − t)γ−β−1((1 − zt)y)ndt

with y ∈ R under the temporary assumption that the series converges. Due to
the uniform convergence of the argument, it is justified to reverse the order of
summation and integration. Noting that

∞∑

n=0

(γ )n

n!
((1 − zt)y)n = F(γ, 1, 1; (1 − zt)y) = (1 − y + t zy)−γ

we can write

∞∑

n=0

(γ )n

n!
F(−n, β, γ ; z)yn = �(γ )

�(β)�(γ − β)

×
∫ 1

0
tβ−1(1 − t)γ−β−1(1 − y + t zy)−γ d t

Under the transformation ζ = zy
y−1 , the r.h.s. of the previous equation is equal to

(1 − y)−γ �(γ )

�(β)�(γ − β)

∫ 1

0
tβ−1(1 − t)γ−β−1(1 − ζ t)−γ d t

= (1 − y)−γ F(γ, β, γ ;
zy

y − 1
)

Hence for |y| < min{1, 1
|z−1| }

∞∑

n=0

(γ )n

n!
F(−n, β, γ ; z)yn = (1 − y)β−γ (1 − y + zy)−β (B2)

when γ �= 0,−1,−2, . . .. Thus we have achieved the generating function of the
hypergeometric polynomials. It is interesting to note that these polynomials are not
orthogonal with respect to the z variable. If we write the hypergeometric equation
in the self-adjoint form, one can readily prove that the orthogonal polynomials in
the real interval [0, 1] with respect to the weight function zγ−1(1 − z)δ−γ−1 are
F(−n, n + δ − 1, γ ; z) (provided that z, δ, γ are real and δ > γ > 0). If we set
γ = α + 1 and δ = α + β + 2, it is possible to identify these polynomials with
those of Jacobi (see Ref. 21):

F(−n, n + α + β + 1, α + 1; z) = n!

(α + 1)n
P (α,β)

n (1 − 2z) (B3)
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Nevertheless if we set β = −i (i ∈ N) in (B2) and we multiply such an equation
by (γ )i

i! ( 1
1−z )i F(−m,−i, γ ; z) and sum over i , we get

∞∑

i,n=0

(γ )i

i!

F(−m,−i, γ ; z)

(1 − z)i

(γ )n

n!

F(−n,−i, γ ; z)

(1 − z)n
=

[
z − 1

z

]γ

after putting y = 1/(1 − z). This leads to the orthogonality relation

∞∑

i=0

(γ )i

i!

1

(1 − z)i
F(−m,−i, γ ; z)F(−n,−i, γ ; z)

= δm,n
(1 − z)nn!

(γ )n

(
z − 1

z

)γ

(B4)

We may define Mn(i ; γ, x) ≡ (γ )n F(−n,−i, γ ; 1 − 1
x ) and finally we achieve

(here x−1 = 1 − z)

∞∑

i=0

Mm(i ; γ, x)Mn(i ; γ, x)
(γ )i

i!
xi = δm,n

n! (1 − x)−γ

(γ )n xn
(B5)

when we fix 0 < x < 1 and γ > 0, Mn(i ; γ, x) are the Meixner polynomials,
which are orthogonal with respect to the discrete measure (γ )i

i! xi .
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